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Abstract. In this paper we present explicit formulas for the ∗-product on quantum spaces which are
of particular importance in physics, i.e., the q-deformed Minkowski space and the q-deformed Euclidean
space in 3 and 4 dimensions, respectively. Our formulas are complete and formulated using the deformation
parameter q. In addition, we worked out an expansion in powers of h = ln q up to second order, for all
considered cases.

1 Introduction

Non-commutative space-time structures seem to be one
of the most hopeful notions in formulating finite quantum
field theories [1]. Even in the content of string theory non-
commutative geometries have recently been studied [2,3].
Especially quantum spaces which can lead to a lattice-
like space-time structure provide a natural frame work for
a realistic non-commutative field theory [4,5]. In order to
do so we employ the ∗-product formalism which represents
the non-commutative structure on a commutative one [6–
8].

In the following we want to concern ourselves with co-
ordinates which have quantum groups as their underlying
symmetry structure, in very much the same way as for ex-
ample the classical Minkowski space has the Lorentz group
as its underlying symmetry structure. Quantum groups
are q−deformations of function algebras over classical Lie
groups (or q−deformations of the enveloping algebra of
classical Lie algebras respectively) [9]. The algebra gen-
erated by the coordinates is a comodule algebra of some
quantum group and is called a quantum space. So we can
define the coordinate algebra Aq generated by the coordi-
nates X̂1, X̂2, . . . , X̂n as

Aq =
C〈X̂1, X̂2, . . . , X̂n〉

R , (1.1)

where the relations between these coordinates reflect the
quantum symmetry and therefore determine the ideal R.
Formal power series in the coordinates are allowed in Aq.

The algebra Aq satisfies the Poincaré-Birkhoff-Witt
property, i.e., the dimension of the subspace spanned by
monomials of a fixed degree is the same as the dimension of
the subspace spanned by monomials in commutative vari-
ables of the same degree. Taking this property and choos-
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ing the monomials of normal ordering X̂i1
1 X̂i2

2 . . . X̂in
n as

basis of Aq, we can establish an isomorphism between Aq

and the commutative algebra A generated by ordinary co-
ordinates x1, x2, . . . , xn, as vector spaces.

W : A −→ Aq (1.2)

W (xi1
1 . . . xin

n ) = X̂i1
1 . . . X̂in

n .

Let us consider a formal power series in the algebra Aq,
f̂ =

∑
i ai1...inX̂

i1
1 . . . X̂in

n , the image under W is f =∑
i ai1...inx

i1
1 . . . xin

n , with the same coefficients ai1...in .
This isomorphism of vector spaces can be extended to an
isomorphism of algebras introducing a non-commutative
product in A, the socalled ∗-product. This product is de-
fined by the relation

W (f ∗ g) =W (f)W (g), (1.3)

where f and g are formal power series in A. This will give
the usual multiplication in the limit q → 1 [10,11,22].
In order to do field theory on non-commutative spaces
one needs to have a notion of integration. This notion is
given in [12]. In this paper we will work out the necessary
∗-product for some relevant quantum spaces, namely for
the q-deformed 3- and 4-dimensional Euclidean space and
the q-deformed Minkowski space.

2 q-deformed 3-dimensional Euclidean space

The algebra of the q-deformed version of 3-dimensional
Euclidean space is the algebra generated by the coordi-
nates X̂3, X̂+, X̂−, satisfying the following relations [4,
13]

X̂3X̂+ = q2X̂+X̂3, X̂−X̂3 = q2X̂3X̂−, (2.4)

X̂−X̂+ = X̂+X̂− + λX̂3X̂3,
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where λ = q − q−1. q is the complex deformation param-
eter.

As a basis of this quantum space we can take the mono-
mials of normal ordering, X̂n+

+ X̂n3
3 X̂

n−
− . Using the isomor-

phismW introduced before, we can assign each monomial
in commutative coordinates a normal ordered expression
of non-commutative coordinates,

W (xn+
+ xn3

3 x
n−
− ) = X̂

n+
+ X̂n3

3 X̂
n−
− . (2.5)

The ∗-product on monomials is then defined by the con-
dition

W
(
(xn+

+ xn3
3 x

n−
− ) ∗ (xm+

+ xm3
3 x

m−
− )

)
=W (xn+

+ xn3
3 x

n−
− )W (xm+

+ xm3
3 x

m−
− ) (2.6)

The right hand side of (2.6) has to be rewritten in normal
ordering, using relations (2.4). For this aim, we need to cal-
culate the commutation relations for X̂n−

− X̂m3
3 , X̂n3

3 X̂
m+
+

and X̂
n−
− X̂

m+
+ .

These commutation relations read

X̂
n−
− X̂m3

3 = q2n−m3X̂m3
3 X̂

n−
− , (2.7)

X̂n3
3 X̂

m+
+ = q2n3m+X̂

m+
+ X̂n3

3 , (2.8)

X̂
n−
− X̂

m+
+ =

min{n−,m+}∑
i=0

λiB
n−,m+
i X̂

m+−i
+ X̂2i

3 X̂
n−−i
− ,

(2.9)

the coefficients Bn−,m+
i satisfy the recursion relation

B
n−,m+
0 = 1,

B
n−,m+
i = B

n−,m+−1
i + q4(m+−i)[[n− − (i− 1)]]q4

×Bn−,m+−1
i−1 , (2.10)

where [[n]]qa ≡ 1−qan

1−qa . As one can see by inserting (2.10)
has the solution

B
n−,m+
i =

1
[[i]]q4 !

[[n−]]q4 ! [[m+]]q4 !
[[n− − i]]q4 ! [[m+ − i]]q4 !

, (2.11)

where [[n]]qa ! := [[n]]qa [[n− 1]]qa · . . . · [[1]]qa , [[0]]qa ! := 1.
(2.6), (2.7-2.9) and (2.11) together, yield the result

W (xn+
+ xn3

3 x
n−
− )W (xm+

+ xm3
3 x

m−
− )

=
min{m+,n−}∑

i=0

C
n−,m+
i

×X̂n++m+−i
+ X̂n3+m3+2i

3 X̂
n−+m−−i
−

=W

min{m+,n−}∑
i=0

C
n−,m+
i

× x
n++m+−i
+ xn3+m3+2i

3 x
n−+m−−i
−


=W

(
(xn+

+ xn3
3 x

n−
− ) ∗ (xm+

+ xm3
3 x

m−
− )

)
, (2.12)

where Cn−,m+
i = λiq2(n3(m+−i)+m3(n−−i))B

n−,m+
i .

This is the ∗-product for monomials. In order to obtain
the ∗-product for arbitrary formal power series

f =
∑

i

ai+,i3,i−x
i+
+ xi3

3 x
i−
− ,

we have to substitute

qnA with qσ̂A = q
xA

∂
∂xA , A ∈ {3,+,−} (2.13)

(no summation overA)with the usual commutative deriva-
tives.

Applying this substitution to (2.12) we end up at the
expression

f ∗ g =
∞∑

i=0

λi x2i
3

[[i]]q4 !
q2(σ̂3σ̂′

++σ̂−σ̂′
3)

×
(
D−

q4

)i

f(x) ·
(
D+

q4

)i

g(x′)
∣∣∣
x′→x

, (2.14)

f, g ∈ Aq. We have used the q-differentiation operator
DA

qf(x) =
f(xA)−f(qxA)

xA−qxA
([14]) in the above formula.

For practical purposes, we want to know an expansion
of expressions (2.12) and (2.14) in the variable h = ln q.
One expects that the main contribution to the ∗-product
is made by the expansion coefficients up to h2. So that we
are not too far away from the classical situation, h = 0.
For the expression (2.12) we get the expansion

(xn+
+ xn3

3 x
n−
− ) ∗ (xm+

+ xm3
3 x

m−
− )

= x
n++m+
+ xn3+m3

3 x
n−+m−
−

+h
(
a
(1)
0 (n,m)x

n++m+
+ xn3+m3

3 x
n−+m−
− + θ(n−)θ(m+)

×a(1)
1 (n,m)x

n++m+−1
+ xn3+m3+2

3 x
n−+m−−1
−

)
+h2

(
a
(2)
0 (n,m)x

n++m+
+ xn3+m3

3 x
n−+m−
− + θ(n−)θ(m+)

×a(2)
1 (n,m)x

n++m+−1
+ xn3+m3+2

3 x
n−+m−−1
−

+ θ(n− − 1)θ(m+ − 1) a(2)
2 (n,m)

×xn++m+−2
+ xn3+m3+4

3 x
n−+m−−2
−

)
+O(h3), (2.15)

where we have the coefficients

a
(1)
0 (n,m) = 2(n3m+ +m3n−),

a
(1)
1 (n,m) = 2n−m+,

a
(2)
0 (n,m) = 2(n3m+ +m3n−)2,

a
(2)
1 (n,m) = 4n−m+((n3 + 1)(m+ − 1)

+(m3 + 1)(n− − 1)),

a
(2)
2 (n,m) = 2n−(n− − 1)m+(m+ − 1). (2.16)

And in terms of derivatives we find

f ∗ g = f(x)g(x) + h

(
2(σ̂3σ̂

′
+ + σ̂′

3σ̂−)
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+2
x2

3

x+x−
σ̂−σ̂′

+

)
f(x)g(x′)

∣∣∣∣∣
x′→x

+h2

(
2(σ̂3σ̂

′
+ + σ̂′

3σ̂−)2

+2
(

x2
3

x+x−

)2

σ̂−(σ̂− − 1)σ̂′
+(σ̂

′
+ − 1)

+4
x2

3

x+x−
σ̂−σ̂′

+((σ̂3 + 1)(σ̂′
+ − 1)

+(σ̂′
3 + 1)(σ̂− − 1))

)
f(x)g(x′)

∣∣∣∣∣
x′→x

+O(h3). (2.17)

3 q-deformed 4-dimensional Euclidean space

The procedure to get the ∗-product for the 4-dimensional
Euclidean space is very much the same as in Sect. 2. There-
fore we will only state the results. The quantum space al-
gebra is freely generated by the coordinates X̂1, X̂2, X̂3

and X̂4, divided by the ideal generated by the following
relations [9,15]

X̂1X̂2 = qX̂2X̂1, X̂1X̂3 = qX̂3X̂1,

X̂3X̂4 = qX̂4X̂3, X̂2X̂4 = qX̂4X̂2,

X̂2X̂3 = X̂3X̂2, X̂4X̂1 − X̂1X̂4 = λX̂2X̂3. (3.18)

As a basis we use the ordered monomials X̂i1
1 X̂i2

2 X̂i3
3 X̂i4

4 ,
and

W (xi1
1 x

i2
2 x

i3
3 x

i4
4 ) = X̂i1

1 X̂i2
2 X̂i3

3 X̂i4
4 . (3.19)

We get to (2.7), (2.8) and (2.9) analogue formulae

X̂n2
2 X̂m1

1 = q−n2m1X̂m1
1 X̂n2

2 ,

X̂n3
3 X̂m1

1 = q−n3m1X̂m1
1 X̂n3

3 ,

X̂n4
4 X̂m3

3 = q−n4m3X̂m3
3 X̂n4

4 ,

X̂n4
4 X̂m2

2 = q−n4m2X̂m2
2 X̂n4

4 ,

X̂m3
3 X̂n2

2 = X̂n2
2 X̂m3

3 , (3.20)

X̂n4
4 X̂m1

1 =
min{n4,m1}∑

i=0

λiBn4,m1
i X̂m1−i

1 X̂i
2X̂

i
3X̂

n4−i
4

where

Bn4,m1
i =

1
[[i]]q−2 !

[[n4]]q−2 ! [[m1]]q−2 !
[[n4 − i]]q−2 ! [[m1 − i]]q−2 !

(3.21)

Therefore the ∗-product of two monomials has the form
(xn1

1 xn2
2 xn3

3 xn4
4 ) ∗ (xm1

1 xm2
2 xm3

3 xm4
4 )

=
min{n4,m1}∑

i=0

λiq−(n2+n3)(m1−i)−(m2+m3)(n4−i)Bn4,m1
i

×xn1+m1−i
1 xn2+m2+i

2 xn3+m3+i
3 xn4+m4−i

4 . (3.22)

Using again the substitution (2.13) we obtain for f, g ∈ Aq

f ∗ g =
∞∑

i=0

λi (x2x3)
i

[[i]]q−2 !
q−(σ̂2+σ̂3)σ̂′

1−(σ̂′
2+σ̂′

3)σ̂4

×
(
D4

q−2

)i

f(x) ·
(
D1

q−2

)i

g(x′)
∣∣∣
x′→x

, (3.23)

with the same definitions and conventions as in the previ-
ous section.

Again we want to expand expressions (3.22) and (3.23)
in terms of h = ln q. We find

(xn1
1 xn2

2 xn3
3 xn4

4 ) ∗ (xm1
1 xm2

2 xm3
3 xm4

4 )

= xn1+m1
1 xn2+m2

2 xn3+m3
3 xn4+m4

4

+h
(
a
(1)
0 xn1+m1

1 xn2+m2
2 xn3+m3

3 xn4+m4
4 + θ(n4)

×θ(m1) a
(1)
1 xn1+m1−1

1 xn2+m2+1
2 xn3+m3+1

3 xn4+m4−1
4

)
+h2

(
a
(2)
0 xn1+m1

1 xn2+m2
2 xn3+m3

3 xn4+m4
4

+θ(n4)θ(m1) a
(2)
1 xn1+m1−1

1 xn2+m2+1
2 xn3+m3+1

3

×xn4+m4−1
4 + θ(n4 − 1)θ(m1 − 1) a(2)

2

×xn1+m1−2
1 xn2+m2+2

2 xn3+m3+2
3 xn4+m4−2

4

)
+O(h3), (3.24)

where a(j)
i = a

(j)
i (n,m),

a
(1)
0 (n,m) = −(n2 + n3)m1 − (m2 +m3)n4,

a
(1)
1 (n,m) = 2n4m1,

a
(2)
0 (n,m) =

1
2
((n2 + n3)m1 + (m2 +m3)n4)2,

a
(2)
1 (n,m) = −2n4m1

(
((n2 + n3) + 1)(m1 − 1)

+((m2 +m3) + 1)(n4 − 1)
)
,

a
(2)
2 (n,m) = 2n4(n4 − 1)m1(m1 − 1). (3.25)

And in terms of derivatives we find

f ∗ g = f(x)g(x) + h

(
− (σ̂2 + σ̂3)σ̂′

1

−(σ̂′
2 + σ̂′

3)σ̂4 + 2
x2x3

x1x4
σ̂4σ̂

′
1

)
f(x)g(x′)

∣∣∣∣∣
x′→x

+h2

(
1
2
((σ̂2 + σ̂3)σ̂′

1 + (σ̂
′
2 + σ̂′

3)σ̂4)2

+2
(
x2x3

x1x4

)2

σ̂4(σ̂4 − 1)σ̂′
1(σ̂′

1 − 1)

−2x2x3

x1x4
σ̂4σ̂

′
1

(
((σ̂2 + σ̂3) + 1)(σ̂′

1 − 1)

+((σ̂′
2 + σ̂′

3) + 1)(σ̂4 − 1)
))

f(x)g(x′)

∣∣∣∣∣
x′→x

+O(h3). (3.26)
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The symmetry in all these expressions between x1 and x4,
respectively n4 and m1 is remarkable. In (3.24) the ex-
ponents of the variables x1 and x4 are always diminished
by the same number. These powers are distributed sym-
metrically among the coordinates x2 and x3. This stems
from the fact that SOq(4) can be decomposed into 2 inde-
pendent copies of SUq(2), as in the classical case. In case
of the Lorentz group its decomposition leads also to the
tensor product of 2 copies of SLq(2), which are related to
each other via complex conjugation. Thus we will not be
able to observe this symmetry between the corresponding
Minkowski coordinates, x0 and x3. Additional terms in
(3.24) will occur where the powers taken away from x−
and x+ are not symmetrically distributed among x0 and
x3. But still some remnants of the symmetry are present,
cf. (4.35).

4 q-deformed Minkowski space

The maybe most important case we want to discuss in this
article is a q-deformed version of the Minkowski space,
the co-module algebra of the q-deformed Lorentz group
[4,5,16–18]. q-Minkowski space is generated by the four
coordinates X̂0, X̂+, X̂3 and X̂−, they satisfy the following
relations

X̂−X̂0 = X̂0X̂−,

X̂+X̂0 = X̂0X̂+,

X̂3X̂0 = X̂0X̂3,

X̂−X̂3 − q2X̂3X̂− = (1− q2)X̂0X̂−,

X̂3X̂+ − q2X̂+X̂3 = (1− q2)X̂0X̂+,

X̂−X̂+ − X̂+X̂− = λ
(
X̂3X̂3 − X̂0X̂3

)
. (4.27)

In order to make the calculations easier, we introduce a

new set of coordinates X̂0, X̂+,
ˆ̃
X3, X̂−, where

ˆ̃
X3 ≡ X̂3 − X̂0. (4.28)

Thus the relations (4.27) become

X̂−
ˆ̃
X3 = q2 ˆ̃X3X̂−,

ˆ̃
X3X̂+ = q2X̂+

ˆ̃
X3, (4.29)

X̂−X̂+ − X̂+X̂− = λ
( ˆ̃
X3

ˆ̃
X3 + X̂0

ˆ̃
X3

)
.

We again introduce the isomorphism W from the commu-
tative coordinate algebra into the q-deformed Minkowski
space

W (xn0
0 x

n+
+ x̃n3

3 x
n−
− ) = X̂n0

0 X̂
n+
+

ˆ̃
X

n3

3 X̂
n−
− , (4.30)

the right hand side is defined as our normal ordering.
Using relations (4.29) we get

ˆ̃
X

n3

3 X̂
m+
+ = q2n3m+X̂

m+
+

ˆ̃
X

n3

3 , (4.31)

X̂
n−
−

ˆ̃
X

m3

3 = q2n−m3 ˆ̃X
m3

3 X̂
n−
− ,

X̂
n−
− X̂

m+
+ =

min{n−,m+}∑
i=0

λiX̂
m+−i
+ F

n−,m+
i (X̂0,

ˆ̃
X3) X̂

n−−i
− ,

where the coefficients Fn,m
i (X̂0,

ˆ̃
X3) satisfy the recursion

relation

Fn,m
i (X̂0,

ˆ̃
X3) = Fn,m−1

i (X̂0,
ˆ̃
X3) + Fn,m−1

i−1 (X̂0,
ˆ̃
X3)

×
(
q4(m−i)[[n− (i− 1)]]q4

ˆ̃
X

2

3

+q2(m−i)[[n− (i− 1)]]q2X̂0
ˆ̃
X3

)
,

Fn,m
0 (X̂0,

ˆ̃
X3) = 1. (4.32)

We could not deduce a closed expression for Fn,m
i (X̂0,

ˆ̃
X3)

solving the recursion relations (4.32).
However, we can write down what we have so far for

the ∗-product of ordered monomials,
(xn0

0 x
n+
+ x̃n3

3 x
n−
− ) ∗ (xm0

0 x
m+
+ x̃m3

3 x
m−
− )

=
min{n−,m+}∑

i=0

λiq2(n3(m+−i)+m3(n−−i))F
n−,m+
i (x0, x̃3)

×xn0+m0
0 x

n++m+−i
+ x̃n3+m3

3 x
n−+m−−i
− . (4.33)

We can rewrite the recursion formula for Fn−,m+
i (x0, x̃3)

Fn,m
j =

m−j∑
i=0

(
q4i[[n− (j − 1)]]q4 x̃2

3

+q2i[[n− (j − 1)]]q2x0x̃3

)
F

n,i+(j−1)
j−1

=
m−j∑
i0=0

i0∑
i1=0

· · ·
ij−2∑

ij−1=0

j−1∏
k=0

n−(j−k)∑
l=0

×
(
q4(l+ik)x̃2

3 + q2(l+ik)x0x̃3

)
(4.34)

and expand this expression in powers of h = ln q. The ex-
pansion of Fn−,m+

i enables us to write down the ∗-product
up to order h2. In order to deduce a closed expression we
will use the identification of the generators of q-deformed
Minkowski space with combinations of the generators of
the Drinfeld-Jimbo algebra Uq(sl2) [19,20,14].

Expanding expression (4.33) in powers of h reads

(xn0
0 x

n+
+ x̃n3

3 x
n−
− ) ∗ (xm0

0 x
m+
+ x̃m3

3 x
m−
− )

= xn0+m0
0 x

n++m+
+ x̃n3+m3

3 x
n−+m−
−

+h

(
a
(1)
0,0(n,m)x

n0+m0
0 x

n++m+
+ x̃n3+m3

3 x
n−+m−
−

+ θ(n−)θ(m+)
∑

i=0,1

a
(1)
1−i,1+i(n,m)

×xn0+m0+(1−i)
0 x

n++m+−1
+ x̃

n3+m3+(1+i)
3 x

n−+m−−1
−

)

+h2

(
a
(2)
0,0(n,m)x

n0+m0
0 x

n++m+
+ x̃n3+m3

3 x
n−+m−
−
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+θ(n−)θ(m+)
∑

i=0,1

a
(2)
1−i,1+i(n,m)

×xn0+m0+(1−i)
0 x

n++m+−1
+ x̃

n3+m3+(1+i)
3 x

n−+m−−1
−

+θ(n− − 1)θ(m+ − 1)
∑

i=0,1,2

a
(2)
2−i,2+i(n,m)

×xn0+m0+(2−i)
0 x

n++m+−2
+ x̃

n3+m3+(2+i)
3 x

n−+m−−2
−

)
+O(h3), (4.35)

where

a
(1)
0,0(n,m) = 2(n3m+ +m3n−),

a
(1)
1,1(n,m) = a

(1)
0,2(n,m) = 2n−m+,

a
(2)
0,0(n,m) = 2(n3m+ +m3n−)2,

a
(2)
1,1(n,m) = 2n−m+

(
(2n3 + 1)(m+ − 1)

+(2m3 + 1)(n− − 1)
)
,

a
(2)
0,2(n,m) = 4n−m+

(
(n3 + 1)(m+ − 1)

+(m3 + 1)(n− − 1)
)
,

a
(2)
2,2(n,m) =

1
2
a
(2)
1,3(n,m)

= a
(2)
0,4(n,m)

= 2n−(n− − 1)m+(m+ − 1). (4.36)

And in terms of derivatives we find

f ∗ g = f(x)g(x) + h

(
2(σ̂3σ̂

′
+ + σ̂′

3σ̂−)

+2
x̃2

3 + x0x̃3

x+x−
σ̂−σ̂′

+

)
f(x)g(x′)

∣∣∣∣∣
x′→x

+h2

(
2(σ̂3σ̂

′
+ + σ̂′

3σ̂−)2 + 4
x̃2

3

x+x−
σ̂−σ̂′

+

×
(
(σ̂3 + 1)(σ̂′

+ − 1) + (σ̂′
3 + 1)(σ̂− − 1)

)
+2

x0x̃3

x+x−
σ̂−σ̂′

+

(
(2σ̂3 + 1)(σ̂′

+ − 1)

+(2σ̂′
3 + 1)(σ̂− − 1)

)
+ 2

(
x̃2

3 + x0x̃3

x+x−

)2

×σ̂−(σ̂− − 1)σ̂′
+(σ̂

′
+ − 1)

)
f(x)g(x′)

∣∣∣∣∣
x′→x

+O(h3). (4.37)

Finally, we want to deduce a closed expression for the
∗-product (4.33). To this aim we have a look at the al-
gebra Uq(sl2) [14]. The algebra is generated by the four
generators E, F , K, K−1, satisfying the relations

KE = q2EK, KF = q−2FK, KK−1 = K−1K = 1,

EF − FE = K−K−1

q−q−1 . (4.38)

Further we have [14]

FnEm = EmFn +
min{n,m}∑

i=1

(−λ)−i [n]! [m]!
[i]! [n− i]! [m− i]!

×
i−1∏

j=0

Kqn−m+j −K−1q−n+m−j

 Em−iFn−i,

(4.39)

where [a] = qa−q−a

q−q−1 .
The operators LA, W defined in (4.40)) can be inter-
preted as q−angular momentum operators [4]. They span
a proper subalgebra of Uq(su2).

L+ ≡ q−3[2]−1/2E,

L− ≡ −q−2[2]−1/2KF,

L3 ≡ q−3[2]−1(qFE − q−1EF ),
W ≡ K + q3λL3. (4.40)

Because of (4.38), these generators satisfy the following
relations

L3L+ − q2L+L3 = −W

q2 L+,

L−L3 − q2L3L− = −W

q2 L−,

L−L+ − L+L− = −W

q3 L3 + λL3L3, (4.41)

1 =W 2 − q6λ2(L3L3 − qL+L− − q−1L−L+).

With the substitution

W → q3λX̂0, LA → X̂A, A ∈ {+, 3,−}, 1 → q6λ2r̂2

we regain the relations of q-Minkowski coordinates (4.27)
[21]. Now we return to the third equation of (4.31). Using
(4.39) one gets

X̂n
−X̂

m
+ = q2nmX̂m

+ X̂n
− +

min{n,m}∑
i=1

[n]! [m]!
[i]! [n− i]! [m− i]!

×
(
λ−
λ+

)i

q2nm+i2−2im (4.42)

×
(

i−1∏
k=0

qn−m+k ˆ̃X
2

3 − q−n+m−kr̂2

)
X̂m−i

+ X̂n−i
− ,

where r̂2 = −q−2 ˆ̃X
2

3 − (1 + q−2)X̂0
ˆ̃
X3 + (q+ q−1)X̂+X̂−,

and λ± = q ± q−1. The right hand side of (4.42) still has
to be ordered according to the normal ordering. Note that
ˆ̃
X

2

3 and r̂2 commute, therefore we find

qi2−2im
i−1∏
k=0

(
qn−m+k ˆ̃X

2

3 − q−n+m−k r̂2
)
X̂m−i

+ X̂n−i
−
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= q−i2
i∑

k=0

(−1)kq(1/2i−k)(i−1)
[
i
k

]
q

(
qi−2kX̂+

)m−i

× ˆ̃
X

2(i−k)

3 r̂2k
(
qi−2kX̂−

)n−i

, (4.43)

where
[
i
k

]
q

= [i]!
[k]! [k−i]! . One can also calculate

W−1
(
ˆ̃
X

2(i−k)

3 r̂2k

)
the last missing link to write down the ∗-product for q-
deformed Minkowski space, and after a lengthy calculation
one gets

W−1( ˆ̃X
2(i−k)

3 r̂2k) (4.44)

= x̃
2(i−k)
3

k∑
p=0

(q4(i−k) λ+x+x−)pSk,p(x0, x̃3),

where

Sk,p(x0, x̃3)

=


1, if p = k

p∑
j1=0

j1∑
j2=0

· · ·
jk−p−1∑
jk−p=0

∏k−p
l=1 a(x0, q

2jl x̃3), if 0 ≤ p < k
,

a(x0, x̃3) = −q−2x̃2
3 − (1 + q−2)x0x̃3. (4.45)

Equations (4.42), (4.44) and (4.45) enable us to order any
two monomials in the q-Minkowski generators and to write
down the ∗-product for q-deformed Minkowski space in a
closed expression,

f ∗ g =
∞∑

i=0

(
λ−
λ+

)i ∑
k+j=i

Rk,j (x)
[[k]]q2 ! [[j]]q2 !

×q(2σ̂3+σ̂−+i)σ̂′
++(2σ̂′

3+σ̂′
++i)σ̂−

×
[
(D−

q2)if
]
(x0, x+, x̃3, q

j−kx−)

·
[
(D+

q2)ig
]
(x′

0, q
j−kx′

+, x̃
′
3, x

′
−)
∣∣∣
x′→x

, (4.46)

with the polynomials

Rk,j(x0, x+, x̃3, x−)

= (−q)k(qj x̃2
3)

j
k∑

p=0

Sk,p(x0, x̃3)λ
p
+(q

4jx+x−)p

=W−1

((
qj ˆ̃X3

2
)j

(−q r̂2)k
)
. (4.47)

So finally, we have found both, the expansion of the ∗-
product in powers of h (4.37) and a closed expression
(4.46).

5 Remarks

Let us end with a few comments on (2.14), (3.23) and
(4.46). First of all, we can see that the formulas for the
∗-product have a similiar structure in all three cases. The
commutative product is modified by an infinite sum of
corrections,

f ∗ g = fg +
∞∑

i=1

hiBi(f, g), (5.48)

cf. [22]. The ith term is of order O(λi) = O(hi).
Additionally, there are some kind of mixed scaling op-

erators of the form qaσ̂′σ̂, which lead to a displacement
effect. The derivatives in the exponent will shift the argu-
ment of the function, such that the value of the ∗-product
at a given point depends not only on their values at that
single point. The displacement effect is present in all di-
mensions and shows that non-commutativity induced by
q−deformation implies some kind of non-locality. Espe-
cially in Minkowski space, one is forced to reinterpret the
concept of causality, as the ∗−product, which can be con-
sidered as some kind of interaction, does not only depend
on the nearby past but also on the nearby future.

The remaining operators and factors are responsible
for an effect we have already mentioned at the end of Sect.
3. This substitution effect is absent in less than 3 dimen-
sions. It transforms the (plane) coordinates X+ and X−
(X1 and X4 resp.) into the transverse coordinate X3 and
the time coordinate X0 (X2 and X3 resp.). It also shows
that physical quantities like charge densities initially re-
stricted to a plane may expand in transverse directions or
undergo a mysterious evolution in time.
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